विभाज्यता के नियम | Rule of Divisibility | 20 Rules of divisibility in maths
विभाज्यता के नियम | Rule of Divisibility | 20 Rules of divisibility in maths , Divisibility rule of 2 विभाज्यता के नियम उन विधियों को कहा जाता हैं जिनसे पता चलता है कि कोई संख्या किसी अन्य संख्या से पूरी तरह विभाजित हो सकती है या नहीं
2 से विभाज्यता का नियम | Divisibility rule of 2
प्रत्येक सम संख्या 2 से विभाजित हो जाती है। अन्य शब्दों में, जिस संख्या का इकाई का अंक 0, 2, 4, 6 या 8 हो, वह संख्या 2 से विभाजित हो जाती है।
जैसे: 154, 6516, 827720, 1000
3 से विभाज्यता का नियम | Divisibility rule of 3
जिस संख्या के सभी अंकों का योग 3 से विभाजित हो जाता है, वह संख्या 3 से विभाजित हो जाती है।उदाहरण :-7608,यह संख्या 3 से विभाजित है क्योंकि अंको का योग (7+6+0+8=21) भी 3 से विभाजित हो रहा है|
जैसे: 65175 => 6+5+1+7+5=24
अंकों का योग 24 है और 24 विभाजित है 3 से, इसलिए 65175 विभाजित है 3 से।
4 से विभाज्यता का नियम | Divisibility rule of 4
जिस संख्या के इकाई और दहाई के अंकों से बनी संख्या 4 से विभाजित हो जाती है, वह संख्या 4 से विभाजित हो जाती है।
जैसे: 772724, 7266260, 722612
जिस संख्या के इकाई और दहाई के अंक शून्य हो, वह संख्या भी 4 से विभाजित हो जाती है।
जैसे: 6161600, 72616000
5 से विभाज्यता का नियम | Divisibility rule of 5
जिस संख्या का इकाई का अंक 0 या 5 हो, वह संख्या 5 से विभाजित हो जाती है।
जैसे: 626260, 71625
6 से विभाज्यता का नियम | Divisibility rule of 6
जो संख्या 2 और 3 दोनों से विभाजित हो, वह संख्या 6 भी विभाजित हो जाती है।
जैसे: 65252, 98016
7 से विभाज्यता का नियम | Divisibility rule of 7
यदि दी गई संख्या के अंक का दोगुना बाकी संख्या (इकाई का अंक छोड़कर) से घटाने पर प्राप्त संख्या 7 से विभाजित है, तो पूरी संख्या 7 से विभाजित हो जाएगी।
जैसे: 343 में इकाई का अंक 3 है।
3 का दोगुना बाकी संख्या से घटाने पर
(34 – 6 = 28)
दो अंकों की संख्या 28 विभाजित है 7 से, अतः 343 भी 7 से विभाजित है।
Note: अगर घटाने पर भी कोई बड़ी संख्या प्राप्त होती है, तो इन्ही steps को दोहराते रहें।
दी गई संख्या के इकाई अंक को 5 से गुणा करके बची संख्या मे जोड़ने प्राप्त संख्या अगर 7 से विभाजित है तो पूरी संख्या भी 7 से विभाजित हो जाएगी।
जैसे – 273
Step 1: इकाई अंक को 5 से गुणा करो
(3×5=15)
Step 2: गुणनफल को इकाई अंक को छोड़कर बाकी की संख्या मे जोड़ दो
(15 + 27 = 42)
42, जोकि 7 से विभाजित है अतः 273 भी 7 से विभाजित होगा
अगर गुणनफल और बाकी संख्या को जोड़ने के बाद भी कोई बड़ी संख्या बने तो ये चरण दोहराएँ :-
संख्या: 9548
Step 1: (8 × 5 = 40)
Step 2: (40 + 954 = 994)
संख्या 994 लेकर दोनों चरण फिर दोहराएँ,
Step 3: (4 × 5 = 20)
Step 4: (20 + 99 = 119)
संख्या 119 लेकर दोनों चरण फिर से दोहराएँ,
Step 5: (9 × 5 = 45)
Step 6: (45 + 11 = 56)
दो अंकों की संख्या 56, सात से विभाजित है, अतः 9548 भी 7 से विभाजित है।
8 से विभाज्यता का नियम | Divisibility rule of 8
जिस संख्या के इकाई, दहाई और सैकडा के अंकों से बनी संख्या 8 से विभाजित होती है, वह संख्या 8 से विभाजित हो जाती है।
जैसे: 176888, 107568
जिस संख्या के इकाई, दहाई और सैकडा के अंक शून्य होते हैं वह संख्या भी 8 से कट जाती है।
जैसे: 626000, 81717000
9 से विभाज्यता का नियम | Divisibility rule of 9
जिस संख्या के अंकों का जोड़ 9 से विभाजित होता है, वह संख्या 9 से विभाजित हो जाती है।
जैसे: 71667 (अंकों का जोड़ 27), 926595 (अंकों का जोड़ 36)
10 से विभाज्यता का नियम | Divisibility rule of 10
जिस संख्या का इकाई का अंक शून्य हो, वह संख्या 10 से विभाजित हो जाती है।
जैसे: 16160, 76640
11 से विभाज्यता का नियम | Divisibility rule of 11
जिस संख्या के सम स्थानों और विषम स्थानों अंकों का योग बराबर हो, वह संख्या 11 से विभाजित हो जाती है।
जैसे: 3267, 52173, 89012
52173 में,
सम स्थानों वाले अंकों का योग = 2 + 7 = 9
विषम स्थानों वाले अंकों का योग = 5 + 1 + 3 = 9
इसलिए 52173 विभाजित है 11 से।
12 से विभाज्यता का नियम | Divisibility rule of 12
जो संख्या 3 और 4 दोनों से विभाजित हो, वह संख्या 12 से भी विभाजित होती है।
जैसे: 4632, 50712
13 से विभाज्यता का नियम | Divisibility rule of 13
यदि किसी संख्या के इकाई के अंक का चार गुना बाकी अंकों से बनी संख्या में जोड़ने पर प्राप्त योगफल यदि 13 से विभाजित है, तो वह संख्या भी 13 से विभाजित हो जाएगी।
जैसे: 2639, 5499
14 से विभाज्यता का नियम | Divisibility rule of 14
जो संख्या 2 और 7 दोनों से विभाजित होती है, वह 14 से भी विभाजित होती है।
जैसे: 266, 672, 1554
15 से विभाज्यता का नियम | Divisibility rule of 15
जो संख्या 3 और 5 दोनों से विभाजित होती है, वह 15 से भी विभाजित होती है।
जैसे: 9765, 15690
16 से विभाज्यता का नियम | Divisibility rule of 16
जिस संख्या के अंतिम चार अंकों से बनी संख्या 16 से विभाजित है, वह संख्या 16 से विभाजित होती है।
17 से विभाज्यता का नियम | Divisibility rule of 17
यदि किसी संख्या के इकाई के अंक का 5 गुना बाकी अंकों से बनी संख्या से घटाने पर वह 17 से विभाजित होती है, तो पूरी संख्या 17 से विभाजित होगी।
जैसे: 2074, 391
बड़ी संख्या की स्थिति में इन दोनों चरणों को बार-बार दोहराएँ।
18 से विभाज्यता का नियम | Divisibility rule of 18
जो संख्या 3 और 6 दोनों से विभाजित हो, वह संख्या 18 से भी विभाजित होती है।
जैसे: 702, 2286
19 से विभाज्यता का नियम | Divisibility rule of 19
यदि किसी संख्या के इकाई के अंक का दोगुना बाकी अंकों से बनी संख्या में जोड़ने पर प्राप्त संख्या 19 से विभाजित है, तो पूरी संख्या 19 से विभाजित होती है।
जैसे: 703, 1881, 2299
बड़ी संख्या होने पर इन दोनों चरणों को बार-बार दोहराएँ।
20 से विभाज्यता का नियम | Divisibility rule of 20
जो संख्या 4 और 5 दोनों से विभाजित हो, वह संख्या 20 से भी विभाजित होती है।
जैसे: 2900, 15820